Patterning of virus-infected Glycine max seed coat is associated with suppression of endogenous silencing of chalcone synthase genes.

نویسندگان

  • Mineo Senda
  • Chikara Masuta
  • Shizen Ohnishi
  • Kazunori Goto
  • Atsushi Kasai
  • Teruo Sano
  • Jin-Sung Hong
  • Stuart MacFarlane
چکیده

Most commercial Glycine max (soybean) varieties have yellow seeds because of loss of pigmentation in the seed coat. It has been suggested that inhibition of seed coat pigmentation in yellow G. max may be controlled by homology-dependent silencing of chalcone synthase (CHS) genes. Our analysis of CHS mRNA and short-interfering RNAs provide clear evidence that the inhibition of seed coat pigmentation in yellow G. max results from posttranscriptional rather than transcriptional silencing of the CHS genes. Furthermore, we show that mottling symptoms present on the seed coat of G. max plants infected with some viruses can be caused by suppression of CHS posttranscriptional gene silencing (PTGS) by a viral silencing suppressor protein. These results demonstrate that naturally occurring PTGS plays a key role in expression of a distinctive phenotype in plants and present a simple clear example of the elucidation of the molecular mechanism for viral symptom induction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endogenous, tissue-specific short interfering RNAs silence the chalcone synthase gene family in glycine max seed coats.

Two dominant alleles of the I locus in Glycine max silence nine chalcone synthase (CHS) genes to inhibit function of the flavonoid pathway in the seed coat. We describe here the intricacies of this naturally occurring silencing mechanism based on results from small RNA gel blots and high-throughput sequencing of small RNA populations. The two dominant alleles of the I locus encompass a 27-kb re...

متن کامل

Comparative analysis of the inverted repeat of a chalcone synthase pseudogene between yellow soybean and seed coat pigmented mutants

In soybean, the I gene inhibits pigmentation over the entire seed coat, resulting in yellow seeds. It is thought that this suppression of seed coat pigmentation is due to naturally occurring RNA silencing of chalcone synthase genes (CHS silencing). Fully pigmented seeds can be found among harvested yellow seeds at a very low percentage. These seed coat pigmented (scp) mutants are generated from...

متن کامل

Duplications That Suppress and Deletions That Restore Expression from a Chalcone Synthase Multigene Family.

Seed coat color in soybean is determined by four alleles of the classically defined / (inhibitor) locus that controls the presence or absence as well as the spatial distribution of anthocyanin pigments in the seed coat. By analyzing spontaneous mutations of the / locus, we demonstrated that the / locus is a region of chalcone synthase (CHS) gene duplications. Paradoxically, deletions of CHS gen...

متن کامل

Tissue-Specific siRNAs That Silence CHS Genes in Soybean

Chalcone synthase (CHS) is required for the biosynthesis of anthocyanin pigments that give color to various plant tissues, such as the flower and seed coat. The silencing of CHS genes produces a highly visible phenotype, lack of color in the seed coat or flower, that facilitated the discovery of gene silencing in eukaryotes (Napoli et al., 1990) and continues to provide a useful system for inve...

متن کامل

The Effect of Chalcone Isomerase (Chi) Gene Silencing on Flavonoids Content in Petunia hybrida using RNAi Technology

have been bred with altered flower color using genetic engineering approaches. One of the most effective applications is the reduction of flower pigments by suppression of involved enzymes in their biosynthesis pathways. RNA interference (RNAi) has provided an effective tool for the knock down of genes involved in the production of flower pigments. In this study, a chi-RNAi construct was design...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 16 4  شماره 

صفحات  -

تاریخ انتشار 2004